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Wearable Energy Harvesters Based on Aligned Mats of Electrospun Piezoelectric 
Nanofibers
D. Olvera-Trejo, L. F. Velásquez-García 
Sponsorship: U.S. Army

Battery recharging and replacement are still chal-
lenging after several decades of developing energy 
sources for portable and wireless devices. For this 
reason, new power sources have become essential 
for current and future stand-alone devices. Energy 
harvesters are an attractive alternative for supplying 
power in these systems. 

We are developing wearable energy harvesters 
based on electrospun piezoelectric nanofibers as 
transducing elements. The proposed harvesting 
device consists of a set of flexible interdigitated 
electrodes on a flexible substrate; the electrodes 
are coated with aligned piezoelectric nanofibers. 
Each time the substrate is stretched or bent, the 
piezoelectric nanofibers produce voltage and charge 
that can be used to feed low-power devices. Our 
energy harvesters could be integrated into garments, 
allowing people to carry less weight and volume in 
batteries, which is particularly advantageous on long 
journeys and when located far from the electrical grid. 

The piezoelectric nanofibers of our energy harvester 
are made of poly(vinylidene difluoride), i.e., PVDF, using 
the electrospinning technique. In electrospinning, a 
solution rich in long-chain polymers that is subject 
to a high electrostatic field ejects a jet that is thinned 
to a submicron diameter due to the interaction of 
the electric field and surface tension effects on the 
fiber (Figure 1). Highly aligned fiber deposition on the 
interdigitated electrodes of the energy harvester is 
necessary to achieve high efficiency. With this goal in 
mind, we developed a custom rotating collector system 
that allows control of the alignment and diameter of the 
deposited nanofibers. The collected fibers tend to be more 
aligned and exhibit smaller fiber diameters when the 
collector drum rotates at thousands of revolutions per 
minute (Figure 2). Current work focuses on controlling 
the morphology of the PVDF fibers and nanofiber mats, 
as well as on testing nanofiber harvester prototypes 
using a custom apparatus and benchtop electronics.

 ▲Figure 1: Electrospinning emitter in operation. A fine jet 
of liquid is electrohydrodynamically ejected from the emit-
ter tip due to the high electric fields present there; the jet 
is stretched into a nanofiber due to the surface tension and 
electrostatic forces it experiments while traveling to the col-
lector electrode. 

 ▲Figure 2: SEM micrograph of aligned PVDF nanofibers 
deposited on a rotating drum collector.

FURTHER READING

• P. J. Ponce de Leon, F. A. Hill, E. V. Heubel, and L. F. Velásquez-García, “Parallel Nanomanufacturing via Electrohydrodynamic Jetting from 
Microfabricated Externally-fed Emitter Arrays,” Nanotechnology, vol. 26, no. 22, pp. 225301, June 2015.
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Fabrication of Core-Shell Microparticles Using 3-D Printed Microfluidics
D. Olvera-Trejo, L. F. Velásquez-García 
Sponsorship: Tecnológico de Monterrey/MIT Nanotechnology Program

Coaxial electrospraying is an electrohydrodynamic 
process that creates core-shell microparticles by at-
omization of a coaxial electrified jet composed of two 
immiscible liquids. Coaxial electrospraying has several 
advantages over other microencapsulation technol-
ogies including higher encapsulation efficiency and 
more uniform size distribution. Coaxial electrosprayed 
compound microparticles can be used in exciting ap-
plications such as feedstock microencapsulation, con-
trolled drug release, and self-healing composites.

Unlike traditional, i.e., uniaxial, electrospraying 
that has been investigated for over 100 years and of 
which many MEMS implementations exist, coaxial 
electrospraying was first described in 2002 and no 
microfabricated coaxial electrospray source had been 
reported due to the inherent three-dimensionality and 
complexity of its hydraulic system.

Stereolithography (SLA) is a layer-by-layer additive 
manufacturing process that creates solid objects via 
photopolymerization of a resin using ultraviolet light. 
Additive manufacturing started as a visualization tool 
for mesoscaled objects, but recent developments in 

the resolution and capabilities of 3-D printing suggest 
that these manufacturing processes could address 
the complexity, three-dimensionality, and material 
requirements of many microsystems. In particular, 
high-resolution SLA can be used to manufacture 
freeform microfluidics at a small fraction of the cost 
per device, infrastructure cost, and fabrication time of 
a typical silicon-based microfluidic system.

We developed SLA 3-D printed coaxial electrospray 
sources with one or two emitters that are fed by two 
helical channels (Figure 1). Each emitter spout is designed 
to produce a coaxial flow and to enhance the electric field 
on the liquid meniscus. Using these devices, we produced 
uniform core-shell microparticles using deionized water 
as the inner liquid and sesame oil as the outer liquid 
(Figure 2). The size of the droplets can be modulated by 
controlling the flow rates fed to the emitters. Electrical 
characterization of the devices demonstrates that the 
emitters operate uniformly. Current research efforts 
focus on demonstrating massively multiplexed sources 
with uniform array operation.

 ▲Figure 1: 3-D printed coaxial electrospray device next to a 
0.3-mm-diameter mechanical pencil; the different colors of 
the liquids supplied to the device evidence the helical chan-
nels that feed the emitter nozzle.

 ▲Figure 2: Optical image from a fluorescent microscope of 
core-shell droplets (core is water dyed with Rhodamine B, 
shell is sesame oil) immersed in water dyed with fluorescein. 
The compound particles were produced by one of our 3-D 
printed coaxial electrospray sources. The oil shell covering 
each red-colored core of the droplets prevents their mixing 
with green-colored water.

FURTHER READING

• L. F. Velásquez-García, “SLA 3-D Printed Arrays of Miniaturized, Internally-fed, Polymer Electrospray Emitters,” Journal of 
Microelectromechanical Systems, vol. 24, no. 6, pp. 2117-2127, December 2015.

• D. Olvera-Trejo and L. F. Velásquez-García, “3-D Printed Microfluidic Devices for Electrohydrodynamic Generation of Core-shell Microparticles,” 
in Technical Digest 17th Solid-State Sensor, Actuator and Microsystems Workshop, pp. 176 – 179, 2016.
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3-D Printed Massively Multiplexed Electrospray Sources
L. F. Velásquez-García 
Sponsorship: U.S. Army

Electrospray is a electrohydrodynamic phenomenon 
that produces from a meniscus a stream of micro/
nanoparticles that, depending on the properties of the 
liquid and the process conditions, can be droplets, ions, 
or fibers. The low spread in size and specific charge of 
the emitted particles makes the use of electrospray at-
tractive in applications such as combustors, maskless 
micro/nanomanufacturing, and nanosatellite propul-
sion. However, the throughput of an electrospray emit-
ter is very low, limiting the applicability of single-emitter 
electrospray sources to a few practical cases, e.g., mass 
spectrometry of biomolecules. 

An approach to increase the throughput of an 
electrospray source without increasing the size variation 
of the emission is implementing arrays of electrospray  
emitters that operate in parallel. Miniaturization 
of the electrospray emitters results in less power 
consumption and lower onset voltage; in addition, using 
micro-fabrication, monolithic arrays of miniaturized 
emitters with large array size and emitter density can 
be made. Researchers have demonstrated a variety of 
MEMS multiplexed electrospray sources that operate 
uniformly. Although these devices work satisfactorily, 
they present a number of issues: (i) the device archi-
tecture is often a compromise between what should 
be made based on the modeling and what can be made 
given the limitations of traditional microfabrication, 

sacrificing device performance; (ii) a change in any of 
the in-plane features of the design requires the redesign 
and fabrication of one or more lithography masks while 
causing added costs and time delays; (iii) these devices 
are fairly expensive because they are made in a multi-
million semiconductor-grade cleanroom with advanced 
tools that are operated by highly trained staff, which 
restricts their application to high-end applications and 
research.

We recently demonstrated the first 3-D printed 
multiplexed electrospray sources in the literature 
(Figure 1). The devices were fabricated with 
stereolithography and have associated two orders of 
magnitude less fabrication cost per device, fabrication 
time, and manufacturing infrastructure cost compared 
to a silicon MEMS multiplexed electrospray source. The 
3-D printed devices include features not easily attainable 
with other microfabrication methods, e.g., tapered 
channels and threaded holes. Through the optimization 
of the fabrication process, arrays with as many as 236 
internally fed electrospray emitters (236 emitters in 
1 cm2) were made, i.e., a twofold increase in emitter 
density and a sixfold increase in array size compared 
with the best reported values from multiplexed, 
internally fed, electrospray sources made of polymer. 
The characterization of devices with a different array 
size suggests a uniform emitter operation (Figure 2).

 ▲Figure 1: A 3-D printed planar array of 143 tapered, internally 
fed electrospray emitters in 1 cm2 (143 emitters/cm2, hexagonal 
packing) The emitters are fed by 12 mm long tapered internal 
channels with 400 μm diameter at the emitter spouts. 

 ▲Figure 2: External row of 5 emitters part of a 49-emitter planar 
array (70 emitters/cm2, square packing). The scalloping on the 
exterior of the emitters, due to the layer-by-layer manufacturing, 
is visible.

FURTHER READING

• B. Gassend, L. F. Velásquez-García, A. I. Akinwande, M. Martínez-Sánchez, “A Microfabricated Planar Electrospray Array Ionic Liquid Ion Source with 
Integrated Extractor,” J. Microelectromech. Syst., vol. 18, no. 3, pp. 679-694, June 2009.

• F. A. Hill, E. V. Heubel, P. J. Ponce de Leon, L. F. Velásquez-García, “High-Throughput Ionic Liquid Ion Sources Using Arrays of Microfabricated 
Electrospray Emitters with Integrated Extractor Grid and Carbon Nanotube Flow Control Structures,” J. Microelectromech. Syst., vol. 23, no. 5, pp. 
1237-1248, October 2014.

• L. F. Velásquez-García, “SLA 3-D Printed Arrays of Miniaturized, Internally-fed, Polymer Electrospray Emitters,” J. Microelectromech. Syst., vol. 24, 
no. 6, pp. 2117 – 2127, December 2015.
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Optimization of Capillary Flow through Open Microstructured Arrays
P. Ponce de Leon, L. F. Velásquez-García 
Sponsorship: DARPA

Liquid propagation through porous microstructures has 
received significant attention due to the importance of 
precisely controlling flow in microfluidic systems. Peri-
odic surface structures, e.g., arrays of open micropillars 
or open microchannels, sometimes can be used to con-
trol the flow in a microsystem, introducing benefits such 
as direct access to the porous structure, device reusabil-
ity, and resilience against clogging. In an open fluidic 
structure, the liquid is not actively pumped, e.g., using an 
upstream pressure signal; instead, the microstructured 
surface passively drives the liquid via capillary action. 
However, the same surfaces driving the flow via sur-
face tension’s pull simultaneously impede it by way of 
viscous resistance. Therefore, optimization of the geom-
etry of the microstructured surface is required to maxi-
mize the flow rate it transports.

We developed semi-analytical models that describe 
the dynamics of capillary flow against gravity in (i) 
vertical arrays of open microchannels with rectangular 
cross-section and (ii) arrays of open micropillars with 
square packing and square cross section. We also 
extended our analysis to capture the shear-thinning 
behavior typical of many non-Newtonian fluids. Our 
models indicate the existence of multiple flow rate 
maxima with respect to pore size. One maximum, which 
occurs only in micropillar arrays, arises from the trade-
off between capillary pressure and viscous resistance. 

The two other maxima, which occur for both micropillar 
and microchannel arrays, are related to meniscus and 
gravitational effects and only appear at low aspect-
ratio (i.e., in channels/gaps between adjacent pillars 
that are about as wide as they are deep) and high Bond 
number, respectively. Experimental capillary rise data 
demonstrate that incorporating first-order gravitational 
effects and the impact of meniscus curvature improved 
flow rate predictions relative to models that neglect 
these factors (Figures 1 and 2; in both figures the working 
liquid is 1% PEO in 40/60 ethanol/water). Experimental 
capillary rise data also confirm the existence and 
location of a flow maximum with respect to the width of 
an open-microchannel; operating at any of the maxima 
decreases the sensitivity of flow rate to geometric 
variation, allowing for more robust microfluidic systems. 
Finally, we demonstrated electrospray emission from 
the edge of a microstructured surface as an example 
of an application of the porosity geometries we in-
vestigated in this study; the supply-limited regime of 
the current-voltage characteristics of these devices are 
in agreement with the literature on electrospray droplet 
emission, opening the possibility to implement arrays 
of externally-fed electrohydrodynamic jetting emitters 
that can operate continuously while producing droplets 
or nanofibers using suitable working liquids.

 ▲Figure 1: Height of rising liquid front vs. time for various open-
microchannel geometries. In each subplot the blue circles are 
measured data points. The solid blue line shows the predictions 
of our model, and the dashed green line shows predictions 
neglecting gravitational and meniscus-permeability effects. Left – 
microchannels 139 μm deep, 149 μm wide, 101-μm thick walls; right 
– microchannels 141 μm deep, 211 μm wide, 289-μm thick walls.

 ▲Figure 2: Height of rising liquid front vs. time for various 
open-micropillar array geometries. In each subplot the blue 
circles are measured data points, the solid blue line shows the 
predictions from our data, and the dashed green line shows 
predictions of the model proposed by Xiao et al, Langmuir, 
2010. Left – micropillars 140 μm tall, 93 μm wide, 157 μm gap; 
right – microchannels 143 μm tall, 289 μm wide, 211 μm gap.

FURTHER READING

• F. A. Hill, E. V. Heubel, P. J. Ponce de Leon, and L. F. Velásquez-García, “High-throughput Ionic Liquid Ion Sources Using Arrays of Microfabricated 
Electrospray Emitters with Integrated Extractor Grid and Carbon Nanotube Flow Control Structures,” Journal of Microelectromech. Syst., vol. 
23, no. 5, pp. 1237-1248, October 2014.

• P. J. Ponce de Leon, F. A. Hill, E. V. Heubel, and L. F. Velásquez-García, “Parallel Nanomanufacturing via Electrohydrodynamic Jetting From 
Microfabricated Externally-fed Emitter Arrays,” Nanotechnology, vol. 26, no. 22, pp. 225301-1 – 225301-10, June 2015.

• P. J. Ponce de Leon, and L. F. Velásquez-García, “Optimization of Capillary Flow Through Open-microchannel and Open-micropillar Arrays,” 
Journal of Physics D – Applied Physics, vol. 49, no. 5, pp. 055501-1 – 055501-13, February 2016.
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Chip-Scale Electrostatic Vacuum Ion Pump with Nanostructured Field Emission 
Electron Source
A. Basu, L. F. Velásquez-García 
Sponsorship: DARPA

Cold-atom interferometry of alkali atoms can be used in a 
variety of high-precision sensors and timing devices such 
as atomic clocks, gyroscopes, accelerometers, magnetom-
eters, and gravimeters. These devices require ultra-high 
vacuum (UHV, pressure < 10-9 Torr) to operate; therefore, 
chip-scale versions require miniaturized UHV pumps re-
silient to alkali metal vapors that consume power at lev-
els compatible with device portability. In a macro-sized 
chamber, UHV-level vacuum can be maintained using a 
conventional magnetic ion pump, where electrons that 
swirl around the magnetic lines of a magnet create ions 
by impact ionization of neutral molecules, which in turn 
sputter a Ti getter. While scaled-down versions of mag-
netic ion pumps have been reported, these are incompat-
ible with miniaturized cold-atom interferometry systems 
because (i) a reduction in the pump size increases the 
required threshold magnetic field for electron trapping, 
and (ii) the larger magnetic field associated with a minia-
turized ion pump can interfere with the operation of the 
cold-atom sensor, yielding flawed readings. Non-evapo-
rable getter (NEG) pumps are used in some cold-atom in-
terferometry systems, e.g., commercial chip-scale atomic 
clocks; however, NEG pumps are unable to pump noble 
gases such as He and N2 that are present in the chamber, 
and they inefficiently pump alkali vapors.

We are developing vacuum ion pumps compatible 
with chip-scale cold-atom interferometry devices. The 

proposed field emitter array (FEA)-based magnet-free 
ion pump architecture is shown in Figure 1. In this pump 
design, a helical electron collector pulls the electrons 
toward itself, forcing them to first travel beyond the 
height of the electron collector, to then get pushed back 
due to the electrostatic mirror effect of the annular-
shaped ion collector. Therefore, the trajectory of the 
electrons is significantly increased compared to a pump 
design with a parallel-capacitor electrode configuration, 
augmenting the probability of impact ionization. The 
FEA consists of arrays nano-sharp silicon tips, each 
surrounded by a self-aligned gate electrode; we have 
shown that these FEAs do not degrade in the presence 
of Rb vapor. 

Figure 2 shows the semi-log plot of the minus 
time derivative of the pressure versus time during 
pump-down, with the horizontal axis denoting the 
time since the beginning of each pump-down cycle; in 
these experiments, the pressure inside the chamber 
reached values as low as ~7×10-7 Torr. Each data point 
in the plot represents an average of the minus time 
derivative of the pressure considering all pump-down 
cycles. The R2 of the linear fit of the data evidences 
that our reduced-order model accurately explains the 
dynamics of the pump. The slope of the linear fit of 
the data estimates the experimental pumping time 
constant at about 161 seconds.

 ▲Figure 1: Schematic of the FEA-based, magnetic-less ion 
pump architecture. 

 ▲Figure 2: Semi-log plot of the negative of the time 
derivative of the chamber pressure vs. time. From the slope 
of the linear fit, τ = 161.2 s.

FURTHER READING

• A. Basu, M. A. Perez, and L. F. Velásquez-García, “Nanostructured Silicon Field Emitter Array-based High-vacuum Magnetic-less Ion Pump 
for Miniaturized Atomic Spectroscopy Sensors,” Technical Digest of the 18th International Conference on Solid-State Sensors, Actuators, and 
Microsystems (Transducers 2015), Anchorage AK, pp. 1021-1024, June 2015.

• A. Basu, M. A. Perez, and L. F. Velásquez-García, “Miniaturized, Electrostatic, High-vacuum Ion Pump Using a Nanostructured Field Emission 
Electron Source,” 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications 
(PowerMEMS 2015), Boston, MA, December 2015; Journal of Physics Conference Series, vol. 660 pp. 012027-1 – 012027-5, 2015. 

• A. Basu and L. F. Velásquez-García, “Electrostatic Ion Pump with Nanostructured Si Field Emission Electron Source and Ti Particle Collectors 
for Supporting Ultra-high Vacuum in Miniaturized Atom Interferometry Systems,” Journal of Micromechanics and Microengineering, 2016.
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Electrospray-Printed Graphene Oxide Nanostructured Humidity Sensor 
A. P. Taylor, L. F. Velásquez-García 
Sponsorship: Edwards Vacuum

Conductometric gas sensors based on the chemoresis-
tive response of semiconducting metal oxide films are 
widely used due to their simplicity, flexibility in produc-
tion, and broad applicability to many fields. Typically, 
the adsorption of a gas molecule on the surface of a 
metal oxide alters surface electronic properties, causing 
a change in electrical conductivity. Although many met-
al oxides could be used for gas sensing, only a few show 
the appropriate combination of adsorption ability, cat-
alytic activity, sensitivity, and thermodynamic stabili-
ty. These select metal oxides (e.g., SnO2, TiO2, and ZnO), 
however, are the least active from the catalytic point of 
view. To alleviate this problem, doping with redox-ac-
tive noble metal nanoparticles, such as Pt, Au, and Pd, is 
done to enhance conductivity response. Unfortunately, 
noble metals are expensive, thereby precluding their 
use in low-cost applications. An appealing alternative 
material for reactive gas sensing is graphene oxide (GO) 
because of its high sensitivity to adsorbed surface spe-
cies and compatibility with harsh environments. 

We developed low-cost conductometric gas sensors t 
hat use an ultrathin film made of a matrix of GO nano-
flakes as a transducing element. The devices were 
fabricated by lift-off metallization and near-room 
temperature, atmospheric pressure electrospray printing 
using a shadow mask. The sensors detect humidity at 
room temperature without requiring any post-heat 
treatment, harsh chemical reduction, or doping with 
metal nanoparticles. The printed GO devices (Figure 1) 
show a linear relationship between the resistance of the 
GO sensors and relative humidity in the 10-60% range 
(Figure 2); considering that they were fabricated with 
different electrospray printing recipes, the similarity 
between the linear response of the two devices suggests 
a common underlying physical sensing mechanism 
dependent on the intrinsic properties of the material. 
The power consumption of the printed sensors 
was estimated at 6 μW or less in the 10-60% relative 
humidity range.

 ▲ Figure 1: Optical micrograph of a conductometric GO humidity 
sensor with a four-point probe electrode configuration and an inset 
showing a close-up view of the active area (top left corner). From A. 
P. Taylor and L. F. Velásquez-García, Nanotechnology, 2015.

 ▲ Figure 2: Resistance versus relative humidity for two electro-
spray-printed GO sensors. From A. P. Taylor and L. F. Velásquez-
García, Nanotechnology, 2015. 
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