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3-D Printed Microfluidics for Modelling Tumor Microenvironments
A. L. Beckwith, J. T. Borenstein, L. F. Velásquez-García 
Sponsorship: The Charles Stark Draper Laboratory, Inc.

Microfluidic devices show promise as enablers of the 
exploration, development, and customization of med-
ical treatments beyond traditional capabilities while 
saving time and cost. However, one of the principal 
barriers to broad application of microfluidic technolo-
gies in healthcare is related to the inherent challenges 
in device fabrication. Soft lithography approaches 
are generally restricted to planar, simple geometries 
and a few material options and are prone to large 
device-to-device dimensional variation. Current man-
ufacturing methods for complex microfluidic devices, 
e.g., multi-substrate bonded micromachining, are tech-
nically challenging, time-intensive, and constrained 
by existing microfabrication capabilities that affect 
the fabrication yield. 3-D printing has the potential to 
significantly reduce the cost and time to manufacture 
microfluidics while maintaining a required level of 
device functionality. Additionally, 3-D printing enables 
rapid iteration of device designs and construction of 
complex microchannel features that may otherwise be 
difficult, impractical, or unfeasible to attain.

In this project, we are developing a Tumor 
Analysis Platform (TAP) that mimics interactions 
between tumors and the immune system in the human  
body, providing a microenvironment for testing the 
effectiveness of drugs. This microfluidic system is 
capable of testing treatments on tumors directly 
from the patient in a laboratory model to determine 
which therapies most effectively kill that patient’s 
cancer. We are investigating digital light projection/
stereolithography (DLP/SLA) to fabricate complex 
monolithic microfluidic devices that are transparent, 
non-cytotoxic, compatible with commonly used 
sterilization procedures, and, in general, suitable for 
biological applications. Current research has focused 
on exploring the biocompatibility, optical properties, 
minimum feature size resolution, and manufacturing 
repeatability of different printable materials (Figures 
1 and 2). Future work will focus on implementing and 
characterizing different TAP designs. 

▲▲ Figure 1: SLA 3-D printed channels with rectangular 
cross-sections. Channel widths as small as 275 μm 
were successfully printed and filled with red dye. 

▲▲ Figure 2: Chip of 3-D printed material 
evidencing high transparency to visible light.

FURTHER READING

•	 L. F. Velásquez-García, “SLA 3-D-Printed Arrays of Miniaturized, Internally-Fed, Polymer Electrospray Emitters,” J. Microelectromechanical 
Systems, vol. 24, no. 6, 2117-2127, 2015.

•	 D. Olvera-Trejo and L. F. Velásquez-García, “Additively Manufactured MEMS Multiplexed Coaxial Electrospray Sources for High-Throughput, 
Uniform Generation of Core-Shell Microparticles,” Lab Chip, vol. 16, no. 21, 4121-4132, 2016.

•	 A. P. Taylor and L. F. Velásquez-García, “3-D Printed Miniaturized Diaphragm Vacuum Pump,” Technical Digest 30th IEEE Conference on Micro 
Electro Mechanical Systems (MEMS 2017), Jan. 2017.
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Thin-Film Transistors for Implantable Medical Devices
Y. Hosseini, L. F. Velásquez-García, D. S. Boning 
Sponsorship: TruSpine

Miniaturization and implantation of medical devices 
with the ability to monitor vital body parameters can 
enable new opportunities for medical procedures. The 
implantable medical devices market is estimated to 
grow at 5.5% compound annual growth rate (CAGR) to 
reach a $55B size market by 2025. In this regard, flex-
ible hybrid electronic systems have gained attention 
during the last several years for deployment on various 
platforms such as smart lenses, cardiac implants, and 
brain implants, as well as in wireless modules for com-
munication systems integrated with these implants.

In this project, we are exploring the integration 
of various microsystems such as sensors, thin-film 
transistors (TFTs), silicon microelectronics, and 
radio frequency identification (RFID) modules on 
flexible platforms (Figure 1). The goal of this project 
is to fabricate the essential components of these 

systems in a single process to reduce the integration 
complexity for implementing different technologies. 
Our initial work has focused towards integration of 
TFT electronics and thermal sensors on a polyimide 
substrate for flow sensing applications. The TFT is 
fabricated as a back-gate transistor, with aluminum 
oxide as gate insulator and indium-gallium-zinc-oxide 
(IGZO) as n-type channel. The thermal flow sensor 
consists of a combination of a heater and a resistance 
temperature detector (RTD) system. The thermal flow 
sensor consists of Au electrodes and is the extension 
of one of the transistor metal layers (Figure 2). This 
metal layer can be further extended to serve as a 
signal path, bonding pad, and RFID coil. Current work 
focuses on characterizing, optimizing, and addressing 
the reliability issues related to the operation of these 
TFTs for signal conditioning for sensing applications. 

▲▲ Figure 1: The design outlook for integrated microsystems for sensing applications for 
implantable medical devices. 

▲▲ Figure 2: TFTs on a flexible platform 
with inset image showing the integrated 
thermal flow sensor connection to the 
electronic system.

FURTHER READING

•	 “$54.28 Billion Implantable Medical Devices Market – Analysis and Trends & Forecasts 2016-2025.” [Online]. Available: https://globenewswire.com/
news-release/2017/01/24/910380/0/en/54-28-Billion-Implantable-Medical-Devices-Market-Analysis-and-Trends-Forecasts-2016-2025.html, Jan. 24, 2017.



94	 MEMS, Field-Emitter, Thermal,
and Fluidic Devices	 MTL ANNUAL RESEARCH REPORT 2017

Additively Manufactured Miniature Diaphragm Vacuum Pumps
A. P. Taylor, L. F. Velásquez-García 
Sponsorship: Edwards Vacuum

Miniaturized pumps supply fluids at precise flow rates 
and pressure levels in a wide variety of microfluidic sys-
tems. In particular, microfabricated positive displace-
ment pumps that exploit gas compressibility to create 
vacuum have been reported as a first pumping stage in 
non-zero flow, reduced-pressure miniaturized systems, 
such as mass spectrometers. Compared to standard 
microfabrication, additive manufacturing offers the 
advantages of rapid prototyping, larger displacements 
for better vacuum generation and larger flow rate, 
freeform geometries, and a broader material selection 
while attaining minimum feature sizes on par with mi-
crofluidic systems (out-of-plane features in the 10-300-
μm range and in-plane features in the 25-500-μm range). 
In addition, a number of 3-D printing techniques make 
possible the definition of leak-tight, closed channels 
or cavities, sometimes involving a second sacrificial 
material that is removed after printing. 

Using polyjet 3-D printing technology with 42-μm 
XY pixelation and 25-μm layer height, a single-stage 
vacuum pump design with active valves and a total 
pumping volume of 1 cm3 with 5% dead volume was 
implemented (Figure 1a).  Devices were printed in the 
acrylate based, UV curable photopolymer TangoBlack 
Plus® (Shore 27A) in one piece (Figure 1b) or in two 
halves for ease in removing the sacrificial material. The 
pumps were pneumatically actuated and consistently 
pumped down a 1 cm3 volume from atmosphere to 330 
Torr in under 50 seconds operating at 3.27 Hz (Figure 2); 
from the data, the effective flow rate of the device is 
estimated at 8.7 cm3/min.

The compression chamber diaphragms exhibited 
lifetimes approaching 20,000 cycles, while the valves’ 
membranes have not leaked after >1-million cycles. 
Current work focuses on increasing the diaphragm 
lifetime, reducing the ultimate pressure, and improving 
the mass flow rate vs. pressure pump characteristics.

▲▲ Figure 1: (a) Design of the miniature  
diaphragm pump, and (b) image of a pump 
printed in one piece. 

▲▲ Figure 2: Vacuum port pressure vs. time for  
several pump downs and average pump down  
characteristic, 3.27 Hz actuation. 

FURTHER READING

•	 L. F. Velásquez-García, “SLA 3-D-Printed Arrays of Miniaturized, Internally-Fed, Polymer Electrospray Emitters,” J. Microelectromechanical 
Systems, vol. 24, no. 6, 2117-2127, 2015.

•	 D. Olvera-Trejo and L. F. Velásquez-García, “Additively Manufactured MEMS Multiplexed Coaxial Electrospray Sources for High-Throughput, 
Uniform Generation of Core-Shell Microparticles,” Lab Chip, vol. 16, no. 21, 4121-4132, 2016.

•	 A. P. Taylor and L. F. Velásquez-García, “3-D Printed Miniaturized Diaphragm Vacuum Pump,” Technical Digest 30th IEEE Conference on Micro 
Electro Mechanical Systems (MEMS 2017), 1292-1295, Jan. 2017.
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Evaluation of Lost-Wax Micromolding for Additive Manufacturing of Miniaturized 
Metallic Vacuum Components
Z. Sun, L. F. Velásquez-García 
Sponsorship: MIT, Skoltech Program

In contrast to traditional subtractive methods, additive 
manufacturing (AM) is a process of joining materials 
layer by layer to generate solid structures from comput-
er-aided design (CAD) data. Benefits of AM include the 
reduction of the raw materials required to make the part, 
fast manufacturing speed, versatility, and adaptabili-
ty. Furthermore, AM has the potential to enable novel 
designs that could not be fabricated with conventional 
machining practices and to enhance the capability of 
true 3-D micromanufacturing. Standard 3-D printing of 
metallic parts is done via selective laser sintering, where 
a coherent photon beam is used to create a solid from the 
melting of metal powders. However, the printed struc-
tures are coarse and porous with profusely outgassing 
surfaces and have electrical conductivity and mechanical 
strength less than those of the bulk material. Therefore, 
there is a need for better AM technologies to fabricate 
vacuum-compatible miniaturized metallic structures. 

In this project, we are exploring lost-wax micromolding 
as an alternative AM technology for metal parts. Wax 

masters printed via stereolithography were duplicated 
in sterling silver by encasing the master in a ceramic 
mold, removing the wax by melting it, and filling-in 
with metal the cavities left within the mold after wax 
removal; finally, the parts are extracted from the mold 
and polished. An array of pillars (Figure 1) with diameter 
varying from 350 μm to 500 μm and height from 400 
μm to 950 μm was created to characterize feature size 
repeatability (Figure 2). We found close agreement 
between the intended and cast heights for cylinders 
400 μm to 750 μm tall; however for taller cylinders, the 
measured values are smaller than expected, and the 
standard deviation is also larger. This might be related to 
the way high aspect-ratio pillars with a small diameter 
solidify during casting. Further work will focus on 
completing the exploration of this technology to print 
solid, pore-free metal parts including characterization 
of physical properties such as roughness, thermal 
diffusivity, and vacuum outgassing.

▲▲Figure 1: Scanning electron microscope (SEM) image of the 
side view of one pillar in the sterling silver resolution matrix. 

▲▲Figure 2: Measured lost-wax cast height vs. CAD file height in 
the sterling silver resolution matrix.

FURTHER READING

•	 L. F. Velásquez-García, “SLA 3-D-Printed Arrays of Miniaturized, Internally-Fed, Polymer Electrospray Emitters,” J. Microelectromechanical 
Systems, vol. 24, no. 6,  2117 – 2127, 2015.

•	 D. Olvera-Trejo and L. F. Velásquez-García, “Additively Manufactured MEMS Multiplexed Coaxial Electrospray Sources for High-Throughput, 
Uniform Generation of Core-Shell Microparticles,” Lab Chip, vol. 16, no. 21, 4121 – 4132, 2016.

•	 A. P. Taylor and L. F. Velásquez-García, “3-D Printed Miniaturized Diaphragm Vacuum Pump,” Technical Digest 30th IEEE Conference on Micro 
Electro Mechanical Systems (MEMS 2017), 1292 – 1295, Jan. 2017. 
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3-D Printed Multiplexed Electrospinning Sources for Large Production of Nanofibers 
E. García-López, D. Olvera-Trejo, L. F. Velásquez-García
Sponsorship: MIT-Tecnológico de Monterrey Nanotechnology Program

Electrospinning is a versatile process that creates ul-
trathin nanofibers via electro-hydrodynamical jetting. 
Electrospun nanofibers are used in a wide variety of bio-
medical (i.e., tissue healing/scaffolding, drug delivery), 
energy (i.e., electrodes, solar cells), and microsystem 
applications (i.e., sensors, batteries). Even though elec-
trospinning is the only technique capable of generating 
nanofibers of arbitrarily length using a wide variety of 
feedstock, the throughput of an electrospinning emit-
ter is very low, making difficult the use of these fibers 
in commercial products. Multiplexing the emitters, i.e., 
implementing arrays of emitters that work in parallel, 
is an attractive approach to increase the throughput of 
electrospinning sources without sacrificing the quality 
of the fibers generated. Microfabricated multiplexed 
electrospinning sources that achieve uniform opera-
tion at low voltage and large emitter density have been 
reported. However, these devices do not really solve the 
problem well as they are made with standard microfab-
rication, which is expensive and time-consuming. 

In this project, we are exploring stereolithography 
(SLA) to create disposable electrospinning sources 
capable of high-throughput generation of fibers. In SLA, 
UV light is focused on a photopolymer while 3-D layers 
are created through crosslinking, making it possible 
to print complex three-dimensional structures. The 
SLA process has several advantages over competing 
approaches such as a higher resolution, higher quality 
surface, higher customization, and the creation of 
watertight imprints. 

Devices with emitters with 300-µm internal 
diameter have been created (Figure 1). Measured per-
emitter vs. flow rate characteristics using a PEO solution 
demonstrates that the arrays operate uniformly. Current 
research focuses on maximizing the throughput of the 
sources by emitter multiplexing, exploring approaches 
for charging up the emitted jets to produce thinner 
fibers, and in collecting and characterizing aligned PEO 
nanofibers using a drum as a collector system for tissue 
engineering applications (Figure 2).

▲▲ Figure 1: 3-D printed device with one emitter producing 
PEO nanofibers.

▲▲ Figure 2: Aligned PEO nanofibers collected using a 
rotating drum collector.

FURTHER READING

•	 P. J. Ponce de Leon, F. A. Hill, E. V. Heubel, and L. F. Velásquez- García, “Parallel Nanomanufacturing via Electrohydrodynamic Jetting from 
Microfabricated Externally Fed- Fed Emitter Arrays,” Nanotechnology, vol. 26, no. 22, 225301-1-225301-10, 2005. 

•	 L. F. Velásquez- Garcia, “SLA 3-D Printed Arrays of Miniaturized, Internally Fed Polymer Electrospray Emitters,” J. Microelectromechanical 
Systems, vol. 24, no. 6, 2117-2127, Dec. 2015.

•	 D. Olvera-Trejo and L. F. Velásquez-García, “Additively Manufactured MEMS Multiplexed Coaxial Electrospray Sources for High-Throughput, 
Uniform Generation of Core-Shell Microparticles,” Lab on a Chip, vol. 16, no. 21, 121 – 4132, Nov. 2016.
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Atmospheric Microplasma-Based 3-D Printing of Metallic Microstructures
Y.  Kornbluth, R. Mathews, L. Parameswaran, L. M. Racz, L. F. Velásquez-García 
Sponsorship: MIT Lincoln Laboratory

State-of-the-art additive manufacturing techniques 
for metallic microstructures cannot yet deliver the 
feature resolution, electrical conductivity, and material 
choice flexibility needed for high-performance micro-
circuits. Further, many current and proposed additive 
manufacturing approaches for fine-geometry metal 
features require high-temperature post-processing and 
restrict the substrate material. We aim to develop a mi-
croplasma-based sputtering system able to direct write 
a wide range of materials onto any substrate. We have 
modeled, designed, and constructed a first-generation 
system that sputters gold onto a substrate. By manip-
ulating the metal at the atomic level, we retain the re-
sistivity of bulk metal, and by sputtering the metal, we 
eliminate the need for post-processing or lithographic 
patterning. 

We use a microplasma to sputter metal at 
atmospheric pressure, obviating the need for a 
vacuum. Our microplasma generator uses electrostatic 
fields to focus the imprints. With a suitable electrode 
arrangement, we can shape electrostatic fields that 
will guide the ionized fraction of the working gas 
towards a localized spot on the substrate. The directed 

ions will collide with other gas atoms and, crucially, 
with sputtered metal atoms from the sputtering target. 
The net force due to these collisions will indirectly 
guide the metal atoms towards the desired part of 
the substrate. This indirect electrostatic focusing not 
only mitigates the inherent spread of the sputtered 
material caused by collisions at atmospheric pressure, 
but also enables feature definition. In the absence 
of collisions, the printed line will be wider than the 
sacrificial cathode. By focusing the sputtered material, 
we achieve imprints significantly narrower than the 
cathode. This precludes the need to machine sacrificial 
electrodes as small as our desired printed lines.

Our microplasma head has a central target wire 
acting as the cathode, surrounded by four electrodes 
(Figure 1), two biased at a positive voltage (relative to 
the grounded target) to form the plasma, and the other 
two biased at a negative voltage to focus the plasma. 
By both pulling and pushing the plasma, COMSOL 
simulations predict imprints orders of magnitude 
narrower than the cross section of the target wire 
(Figure 2).

▲▲ Figure 1: A picture of two electrode assemblies. The target wire is 
installed at the center of the structure. The resulting plasma sput-
ters metal atoms from the target, which then are carried towards 
the  substrate by the gas flow and the electrostatic drag.

▲▲ Figure 2: COMSOL simulation results showing a top-
down view of the distribution of sputtered material on 
the substrate. Only one quarter of the substrate is shown 
because the simulation is symmetric on the two in-plane 
axes. For an optimized set of parameters, simulations pre-
dict that a 15-μm-wide (full width half maximum) gold line 
is printed on the substrate.

FURTHER READING

•	 A. M. Abdul-Wahed, A. L. Roy, Z. Xiao, and K. Takahata, “Direct Writing of Thin and Thick Metal Films via Micro Glow Plasma Scanning,” 
Technical Digest 29th IEEE Conference on Micro Electro Mechanical Systems (MEMS 2016), 443-446, Jan., 2016.

•	 E. D. Burwell IV, “A Microplasma-Based Sputtering System for Direct-Write, Microscale Fabrication of Thin-Film Metal Structures,” Master’s 
Thesis, Case Western Reserve University, Cleveland, 2016.
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MEMS Electrohydrodynamic High-Throughput Core-Shell Droplet Sources
D. Olvera-Trejo, L. F. Velásquez-García 
Sponsorship: MIT-Tecnológico de Monterrey Nanotechnology Program

Coaxial electrospraying is a microencapsulation tech-
nology based on electrohydrodynamic jetting of two 
immiscible liquids that allows precise control with 
low size variation of the geometry of the core-shell 
particles it generates. Coaxial electrospraying is a very 
promising microencapsulation technique because (i) 
it is easy to implement, (ii) it can operate at room tem-
perature and at atmospheric pressure, (iii) it does not 
require a series of steps in the encapsulation process, 
(iv) it can generate compound droplets with narrow 
size distribution, and (v) it can be used to encapsulate a 
great variety of materials of interest to biomedical and 
engineering applications. State-of-the-art coaxial elec-
trospray sources have very low throughput because 
they have only one emitter. Consequently, coaxial elec-
trosprayed compound particles are compatible with 
only high-end applications and research. 

An approach to increasing the throughput of a 
coaxial electrospray source without affecting the size 
variation of the emitted compound microparticles is 
to implement arrays of coaxial emitters that operate 

in parallel. However, no miniaturized coaxial array 
sources have been reported, probably due to the 
inherent three-dimensionality of the emitter geometry 
and the hydraulic network required for uniform array 
operation, which is at odds with the planar nature 
of traditional microfabrication. In this project, we 
demonstrated the first MEMS multiplexed coaxial 
electrospray sources in the literature. Miniaturized 
core-shell particle generators with up to 25 coaxial 
electrospray emitters (25 emitters·cm-2) were fabricated 
via digital light projection/stereolithography (DLP/
SLA, Figure 1), which is an additive manufacturing 
process based on photopolymerization of a resin that 
can create complex microfluidics. The characterization 
of emitter arrays with the same emitter structure 
but different array size demonstrates uniform array 
operation. The core/shell particles produced by these 
additively manufactured sources are very uniform 
(Figure 2); the size distribution of these compound 
microparticles can be modulated by controlling the 
flow rates fed to the emitters.

▲▲ Figure 1: DLP/SLA 3-D printed monolithic array of coaxial 
electrospinning emitters.

▲▲ Figure 2: Core-shell microdroplets generated by 
massively multiplexed MEMS coaxial electrospray 
sources. The feedstock was colored with fluorescent 
dyes to help visualize the structure of the droplets.

FURTHER READING

•	 L. F. Velásquez-García, “SLA 3D-Printed Arrays of Miniaturized, Internally-Fed, Polymer Electrospray Emitters,” J. Microelectromechanical 
Systems, vol. 24, no. 6, 2117–2127, 2015.

•	 D. Olvera-Trejo and L. F. Velásquez-García, “Additively Manufactured MEMS Multiplexed Coaxial Electrospray Sources for High-Throughput, 
Uniform Generation of Core-Shell Microparticles,” Lab Chip, vol. 16, no. 21, 4121–4132, 2016.

•	 A. Taylor and L. F. Velásquez-García, “3D Printed Miniaturized Diaphragm Vacuum Pump,” Technical Digest 30th IEEE Conference on Micro 
Electro Mechanical Systems (MEMS 2017), 1292–1295, Jan. 2017.
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